

Novel Therapeutics

ATISH CHOUDHURY MD PHD
Senior Physician, Dana-Farber Cancer Institute
Assistant Professor of Medicine, Harvard Medical School

Why do we need new treatments for prostate cancer? Don't we have enough?

- Patients at first diagnosis of metastatic prostate cancer should be treated with testosterone lowering drugs (ADT) plus potent blockers of male hormone (androgen) signaling in cancer cells
- Chemotherapies Taxotere (docetaxel) and Jevtana (cabazitaxel) and radiopharmaceutical Pluvicto (¹⁷⁷Lu-PSMA-617) can be effective in shrinking cancer that has become resistant to hormonal drugs, but not in everyone and usually work temporarily
- The prostate cancer vaccine Provenge (sipuleucel-T) and bonetargeted radiation drug Xofigo (Radium-223) prolong survival but do not usually shrink cancer
- Recently approved treatments for prostate cancer Lynparza/Talzenna (olaparib/talazoparib) and Keytruda (pembrolizumab) are only approved for use in a minority of prostate cancer patients (<20% for Lyparza, 2-3% for Keytruda)
- ➤ After hormonal therapies stop working, there are limited options outside of chemo and Pluvicto that can shrink prostate cancer

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

Why is prostate cancer treated with hormonal therapies?

Testosterone and other male hormones stimulate prostate cancer growth and survival

- Testosterone (T) produced by the testes is converted to dihydrotestosterone (DHT) in prostate cancer cells
- DHT binds the Androgen
 Receptor (AR), which then
 enters the nucleus of the
 cancer cell and stimulates the
 cell to grow and survive
- Male hormones (androgens)
 made by the adrenal glands
 (e.g. DHEA) or the prostate
 cancer cells themselves can
 also activate the androgen
 receptor

- Androgen Deprivation
 Therapy (ADT) lowers the level of testosterone in the blood, which leads prostate cancer cells to stop dividing and die
- The goal is to achieve a level of testosterone <50 ng/dL
- Can be accomplished by surgical castration

- Androgen Deprivation
 Therapy (ADT) lowers the level of testosterone in the blood, which leads prostate cancer cells to stop dividing and die
- The goal is to achieve a level of testosterone <50 ng/dL
- Can be accomplished by surgical castration or by injectable medications to decrease the production of testosterone by the testes, called LHRH agonists (e.g Lupron) or LHRH antagonists

- In metastatic disease, ADT leads all tumors in the body (in the prostate, lymph nodes, bone, other organs) to shrink
- In non-metastatic systemic disease (when PSA is elevated in the blood after local treatment but tumors are not seen on scans), ADT prevents microscopic prostate cancer cells from developing into tumors
- When combined with radiation, ADT can prevent cancer cells from surviving damage caused by the radiation, and kill microscopic cells located elsewhere in the body

What other hormonal drugs are used in prostate cancer?

What other hormonal drugs are used in prostate cancer?

Potent novel anti-androgens

- Block binding of DHT (and other male hormones) to the AR
- Prevent the AR from entering the nucleus
- Combined with ADT at initial diagnosis of metastatic prostate cancer, or used when ADT stops working

What other hormonal drugs are used in prostate cancer?

Adrenal inhibitors

 Ketoconazole and abiraterone (Zytiga) used when ADT stops working

It's 2025 - shouldn't we be using genetically/molecularly targeted therapies?

- Signaling through the Androgen Receptor is the most important molecular pathway driving prostate cancer cell growth and survival
 - Androgen deprivation therapy is molecularly targeted therapy
- When ADT stops working (the cancer is "castration-resistant"), this is frequently due to alterations in the gene encoding the Androgen Receptor
 - Novel drugs that target Androgen Receptor signaling (abiraterone, enzalutamide) in castration resistant prostate cancer are genetically targeted agents

What are changes in AR signaling that lead to "castration resistance"?

- Novel ways to target the androgen receptor (AR)
 - AR degraders luxdegalutamide (ARV-766, JSB462), BMS-986365 (CC-94676)
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - Bi-specific T-cell engagers
 - CAR-T cells
- Antibody-drug conjugates
- Radiopharmaceuticals

PROTAC: PROteolysis TArgeting Chimera

- Technology developed by Prof. Craig Crews, Yale University
- Arvinas founded in 2013

[ARV-110], nM

Neklesa T, et al. DOI: 10.1200/JCO.2019.37.7_suppl.259 Journal of Clinical Oncology 37, no. 7_suppl (March 1 2019) 259-259.

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals capivasertib (AKT), cabozantinib (MET,VEGFR2), mevrometostat (EZH2)
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

Mechanism of action of capivasertib

Mechanism of action of cabozantinib

Mechanism of action of mevrometostat

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair PARP inhibitors
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

Mechanism of action of PARP inhibitors (olaparib, talazoparib, rucaparib, niraparib)

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors pembrolizumab (PD-1), atezolizumab (PD-L1)
 - Vaccines sipuleucel-T (Provenge)
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

Immunotherapy approaches in cancer

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

CAR-T cells

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

Mechanism of action of Bi-specific T-cell Engager (BiTEs)

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

Antibody-drug conjugates in prostate cancer

- Novel ways to target the androgen receptor (AR)
 - AR degraders
- Molecularly targeted therapies
 - Drugs that block growth / survival signals in cancer cells
 - Drugs that block DNA damage repair
- Immune therapies
 - Immune checkpoint inhibitors
 - Vaccines
 - CAR-T cells
 - Bi-specific T-cell engagers
- Antibody-drug conjugates
- Radiopharmaceuticals

Radiopharmaceuticals

Beta particle radiation – ⁸⁹Sr, ¹⁵³Sm, ¹⁷⁷Lu, ⁶⁷Cu, ¹⁶¹Tb

Pluvicto

Energy: 50-2300 keV Range: 0.05-12 mm LET: 0.2 keV/mm

²²⁵Ac, ²¹²Pb

Energy: 5-9 MeV Range: 40-100 μm LET: 80 keV/mm

Auger electron radiation — 161 Tb

Energy: eV-keV Range: 2-500 nm LET: 4-26 keV/mm

Tumor

Healthy cell

Reactive oxygenated species

Particle range

Mechanism of action of Radium-223

- Radium-223 acts as a calcium mimic
- Naturally targets new bone growth in and around bone metastases
- Alpha-particles induce double-strand DNA breaks in adjacent tumour cells
- Short penetration of alpha emitters (2-10 cell diameters) = highly localized tumour cell killing and minimal damage to surrounding normal tissue

¹⁷⁷Lu-PSMA-617 targeted radioligand therapy

